Increased Neurotropic Threat from Burkholderia pseudomallei Strains with a B. mallei–like Variation in the bimA Motility Gene, Australia

نویسندگان

  • Jodie L. Morris
  • Anne Fane
  • Derek S. Sarovich
  • Erin P. Price
  • Catherine M. Rush
  • Brenda L. Govan
  • Elizabeth Parker
  • Mark Mayo
  • Bart J. Currie
  • Natkunam Ketheesan
چکیده

Neurologic melioidosis is a serious, potentially fatal form of Burkholderia pseudomallei infection. Recently, we reported that a subset of clinical isolates of B. pseudomallei from Australia have heightened virulence and potential for dissemination to the central nervous system. In this study, we demonstrate that this subset has a B. mallei-like sequence variation of the actin-based motility gene, bimA. Compared with B. pseudomallei isolates having typical bimA alleles, isolates that contain the B. mallei-like variation demonstrate increased persistence in phagocytic cells and increased virulence with rapid systemic dissemination and replication within multiple tissues, including the brain and spinal cord, in an experimental model. These findings highlight the implications of bimA variation on disease progression of B. pseudomallei infection and have considerable clinical and public health implications with respect to the degree of neurotropic threat posed to human health.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Actin-binding proteins from Burkholderia mallei and Burkholderia thailandensis can functionally compensate for the actin-based motility defect of a Burkholderia pseudomallei bimA mutant.

Recently we identified a bacterial factor (BimA) required for actin-based motility of Burkholderia pseudomallei. Here we report that Burkholderia mallei and Burkholderia thailandensis are capable of actin-based motility in J774.2 cells and that BimA homologs of these bacteria can restore the actin-based motility defect of a B. pseudomallei bimA mutant. While the BimA homologs differ in their am...

متن کامل

Prevalence and sequence diversity of a factor required for actin-based motility in natural populations of Burkholderia species.

Actin-based motility of the melioidosis pathogen Burkholderia pseudomallei requires BimA. We report a high degree of conservation of bimA in 99 B. pseudomallei isolates from the area of endemicity. A geographically restricted subset of B. pseudomallei isolates harbored a B. mallei-like bimA allele (12.1%), confounding a differential diagnostic test based on amplification of species-specific bim...

متن کامل

Virulent Burkholderia Species Mimic Host Actin Polymerases to Drive Actin-Based Motility

Burkholderia pseudomallei and B. mallei are bacterial pathogens that cause melioidosis and glanders, whereas their close relative B. thailandensis is non-pathogenic. All use the trimeric autotransporter BimA to facilitate actin-based motility, host cell fusion, and dissemination. Here, we show that BimA orthologs mimic different host actin-polymerizing proteins. B. thailandensis BimA activates ...

متن کامل

Development of a polymerase chain reaction assay for the specific identification of Burkholderia mallei and differentiation from Burkholderia pseudomallei and other closely related Burkholderiaceae.

Burkholderia mallei and Burkholderia pseudomallei, the etiologic agents responsible for glanders and melioidosis, respectively, are genetically and phenotypically similar and are category B biothreat agents. We used an in silico approach to compare the B. mallei ATCC 23344 and B. pseudomallei K96243 genomes to identify nucleotide sequences unique to B. mallei. Five distinct B. mallei DNA sequen...

متن کامل

Autotransporters and Their Role in the Virulence of Burkholderia pseudomallei and Burkholderia mallei

Burkholderia pseudomallei and Burkholderia mallei are closely related Gram-negative bacteria responsible for the infectious diseases melioidosis and glanders, respectively. Autotransporters (ATs) comprise a large and diverse family of secreted and outer membrane proteins that includes virulence-associated invasins, adhesins, proteases, and actin-nucleating factors. The B. pseudomallei K96243 ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2017